Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors
نویسندگان
چکیده
Graphene has been intensively studied for applications to high-performance sensors, but the sensing characteristics of graphene devices have varied from case to case, and the sensing mechanism has not been satisfactorily determined thus far. In this review, we describe recent progress in engineering of the defects in graphene grown by a silica-assisted chemical vapor deposition technique and elucidate the effect of the defects upon the electrical response of graphene sensors. This review provides guidelines for engineering and/or passivating defects to improve sensor performance and reliability.
منابع مشابه
Electrophoretic and field-effect graphene for all-electrical DNA array technology.
Field-effect transistor biomolecular sensors based on low-dimensional nanomaterials boast sensitivity, label-free operation and chip-scale construction. Chemical vapour deposition graphene is especially well suited for multiplexed electronic DNA array applications, since its large two-dimensional morphology readily lends itself to top-down fabrication of transistor arrays. Nonetheless, graphene...
متن کاملCarbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors
Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased e...
متن کاملTransmission Properties of the Periodic Structures Based on Graphene Nonlinear Optical Conductivity in a Terahertz Field
By developing the terahertz (THz) technology, in addition to generators and detectors of THz waves, the existence of some tools such as modulators and filters are needed. THz filters are important tools for various applications in the field of chemical and biological sensors. Linear and nonlinear optical properties of the graphene have attracted lots of attention. In fact graphene exhibits vari...
متن کاملFrequency Response of Graphene Electrolyte-Gated Field-Effect Transistors
This work develops the first frequency-dependent small-signal model for graphene electrolyte-gated field-effect transistors (EGFETs). Graphene EGFETs are microfabricated to measure intrinsic voltage gain, frequency response, and to develop a frequency-dependent small-signal model. The transfer function of the graphene EGFET small-signal model is found to contain a unique pole due to a resistive...
متن کامل1 Chemical Vapour Deposition Graphene Field - Effect 2 Transistors for Detection of Human Chorionic 3 Gonadotropin Cancer Risk Biomarker 4
We report on the development of chemical vapour deposition (CVD) based graphene 11 field effect transistor (GFET) immunosensors for the sensitive detection of Human Chorionic 12 Gonadotropin (hCG), a glycoprotein risk biomarker of certain cancers. The GFET sensors were 13 fabricated on Si/SiO2 substrate using photolithography with evaporated chromium and sputtered 14 gold contacts. GFET channel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2016